Archives for posts with tag: proteomics

Kidneys perform the vital role of filtering waste products from the blood. Yet the complete catalogue of constituents that comprise these filters is not known. In new work, analyses of extracellular proteins present in specialised filtration units called glomeruli reveal a composition far more complex than previously appreciated.

Extracellular proteins of the glomerulus // Image by Adam Byron

Extracellular proteins of the glomerulus

Read the rest of this entry »

The movement of cells in the body is of great importance to our lives. For us to learn a language, to fight a cold, to heal a wound, to grow a pair (of arms, say), cells must migrate to the right place at the right time. So cell migration must be tightly controlled – throughout our entire lives.

Cells have many in-built control mechanisms that ensure their appropriate movement, but we still don’t fully understand how these various mechanisms operate.

In new work, published in the Journal of Cell Science this week, Guillaume Jacquemet and others identify a way that cells can coordinate proper cell migration. The research is highlighted by the journal editors and features on the cover of the journal.

Journal of Cell Science cover, 2013, vol. 126 (no. 18) // Image by Mark Morgan & Guillaume Jacquemet // Reproduced with permission from the authors and The Company of Biologists Ltd

Journal of Cell Science cover, 2013, vol. 126 (no. 18)

Read the rest of this entry »

Our paper on extracellular matrix networks and stem cell growth makes the cover of this week’s issue of the Journal of Biological Chemistry. The stunning image by Despina Soteriou captures stem cells growing in a web of extracellular matrix.

Journal of Biological Chemistry cover, 2013, vol. 288 (no. 26) // Image by Despina Soteriou

Journal of Biological Chemistry cover, 2013, vol. 288 (no. 26)

Read the rest of this entry »

Work carried out at the University of Manchester has demonstrated a simple way to measure the abundance of protein molecules more accurately, which could help improve the reliability of many areas of biological and clinical research.

Improving peptide linearity // Image by Adam Byron

Read the rest of this entry »

Research at the University of Manchester has identified networks of proteins that control the fate of our body’s stem cells, findings that could aid progress towards new disease therapies.

Extracellular matrix networks control stem cell fate // Image by Adam Byron

Stem cells have the amazing ability to develop into different types of cells of the body, such as blood cells, muscle cells or brain cells. Remarkably, stem cells can also regenerate, essentially renewing themselves an unlimited number of times.

Read the rest of this entry »